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Why statistics Is important

» Statistics is the theoretical foundation of machine learning
and data science

» Statistics is the bridge between experiments and theories

« Statistics is the bridge between observations (data) and
discoveries (science)



What is a model

* A model describes the relationship between quantities
— Quantitative/mathematical models

« Statistical models
— Relationship between random variables

* “All models are wrong; but some are useful.” (George Box)



Random variables

Randomness

All quantities obtained from experimental measurements
can be considered as random variables

Discrete vs. continuous random variables

Probability distribution



Discrete probability distributions

Bernoulli distribution
Pr(X=1)=p=1—-Pr(X=0)=1-—q.

Binomial distribution .
Pr(x =) = ()1

Negative binomial distribution 5, _ ;) _ (k+2— 1>(1 o

Poisson distribution  pr(x—x) = Ak/:'_A




Continuous probability distributions
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Use of probability distributions in computational biology

* Null models for hypothesis testing

* Noise or background models for signal detection and
differential enrichment analysis

* Error models in regression/machine learning



Central limit theorem

* Regardless of the population distribution, the sample
mean will follow a standard normal distribution, if the
samples are independent and equal size.

 Theoretical foundation of t-test



Hypothesis testing

* General thinking:
— Are they different?
— Is the difference “statistically significant™?

 Statistical thinking:
— Null hypothesis Case | /}(\
— Alternative hypothesis




Negative control in experiments
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Source: https://www.khanacademy.ora/science/biology/intro-to-biology/science-of-biology/a/experiments-and-observations Slide from Jessica Li
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Null hypothesis in statistical hypothesis testing

AwesomeFinTech

A null hypothesis is a type of conjecture used
iN statistics that proposes that there is no
difference between certain characteristics of
a population or data-generating process.
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Null Hypothesis : Testing & Examples
www.awesomefintech.com/terms/null _hypothesis/

The null hypothesis does not depend on a test procedure

Source: https://www.awesomefintech.com/term/null hypothesis/ Slide from Jessica Li
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Null hypothesis in statistical hypothesis testing

AwesomeFinTech

Hypothesis testing provides a method to
reject a null hypothesis within a certain

confidence level. (Null hypotheses cannot be
proven, though.)

rrrrrrrrrrrrr

Null Hypothesis : Testing & Examples
www.awesomefintech.com/terms/null _hypothesis/

Statistics cannot tell us everything b/c data is random

Source: https://www.awesomefintech.com/term/null hypothesis/ Slide from Jessica Li
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Null hypothesis is often misunderstood

Null Hypthesis Null hypothesis
> Hy 6?2??

A null hypothesis is a

form is that

is deemed "frue" until

proven wron? baseq ©
perimenta

[nal hi-'pd-tha-sas]

A hypothesis that
proposes that no statistical

significance exists in a set
o* given observations and
_;' is used to assess the

c——= credibility of a hypothesis
by using sample data.

2 Investopedia

Source: https://www.investopedia.com/terms/n/null _hypothesis.asp Source: https://www.biologyonline.com/dictionary/null-hypothesis

Slide from Jessica Li
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Common hypothesis tests

Student’s t-test (parametric)

— Null (2-sample): The sample means are equal.

Fisher’s exact test

— Null: The two groups are equally likely for an event/feature.
Wilcoxon (rank-sum) test

— Null: The two samples X and Y, P(X>Y) = P(X<Y)=0.5
Kolmogorov-Smirnov test (K-S test)

— Null: The two samples have the same cumulative distribution.

Hypothesis test statistic, p-value



Which of the following statements about p-values
is true?

A. P-values measure how big the difference is between the
datasets compared.

B. P-value is the probability of observing the data by
random chance.

C. P-value is the least probability of observing the data
under the assumption that the null hypothesis is true.



ASA statement on statistical significance and p-values

1. P-values can indicate how incompatible the data are with a
specified statistical model.

2. P-values do not measure the probability that the studied
hypothesis is true, or the probability that the data were produced
by random chance alone.

3. Scientific conclusions and business or policy decisions should
not be based only on whether a p-value passes a specific

threshold.



ASA statement on statistical significance and p-values

4. Proper inference requires full reporting and transparency.

5. A p-value, or statistical significance, does not measure the size
of an effect or the importance of a result.

6. By itself, a p-value does not provide a good measure of evidence
regarding a model or hypothesis.



Multiple testing correction

* High-throughput experiments
— RNA-seq: 500 Differentially Expressed genes from 20K genes
— ChlP-seq: 10,000 TF binding sites from the genome



Bonferroni correction

Controls family-wise error rate
N tests
Adjusted P-value =N * P

Very strict

Carlo Emilio Bonferroni (1892-1960)



Benjamini-Hochberg (B-H) Correction

N observations w/ various p-values
Rank N

Adjusted P=P*N /R

Moderate Yoav Benjamini (1949-)

and Yosef Hochberg



Predicted Class

Positive

Negative

Confusion Matrix

True Class
Positive Negative

Source: https://towardsdatascience.com/confusion-matrix-for-your-multi-class-machine-learning-model-ff9aa3bf7826
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differential expression methods when analyzing
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Yumei Li'", Xinzhou Ge?!, Fanglue Peng?® Wei Li'" and Jingyi Jessica Li#*>%7"

*Correspondence:

weili@uci.edu; lijy03@aq. Abstract

fc'a*‘-‘du When identifying differentially expressed genes between two conditions using human
Yumei Li and Xinzhou Ge I3t RNA- | f q h b fati vsis: t
contributed equally to this population | seq samples, we found a phenomenon by permutation analysis: two
work. popular bioinformatics methods, DESeq2 and edgeR, have unexpectedly high false
]BADiV‘SigA”AOfCSmPUTa“O“a' discovery rates. Expanding the analysis to limma-voom, NOISeq, dearseq, and Wilcoxon
O'foBr%TO;'CgT’ChifE?yem rank-sum test, we found that FDR control is often failed except for the Wilcoxon rank-
School of Medicine, sum test. Particularly, the actual FDRs of DESeq2 and edgeR sometimes exceed 20%
University of California, Irvine, when the target FDR is 5%. Based on these results, for population-level RNA-seq studies

Irvine, CA 92697, USA
2 Department of Statistics,
University of California, Los

with large sample sizes, we recommend the Wilcoxon rank-sum test.



Why there are many DE genes identified from permuted data?
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Important assumption in DESeq2 and edgeR

Both DESeq2 and edgeR assume a negative binomial (NB)
distribution per gene and condition

For each gene,
. Condition 1: X; ' NB(u18:,01), i=1,...,n

« Condition 2: ij e NB(MQSj,UQ), 17=1,....,m

Null hypothesis Hp : 11 = po

appropriate only if the NB assumption is reasonable



Gene expression can deviate from NB distribution

A edgeR (CCNL1)
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Why does Wilcoxon test work in this scenario?

For each gene, the normalized counts

Condition 1: )A(/i, 1=1,...,n
Condition 2: Y, j=1,...,m

Null hypothesis (approximate, ignoring ties):
Hy : IP)()A(:Z > 57}) = 0.5, for all 7,7
which does NOT have the NB assumption



Wilcoxon test is better when sample size > 8
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Monty Hall Problem

Source: Wikipedia



Monty Hall Problem

a Contestant Host If contestant does not switch
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Correct

Incorrect

The order of action matters

P-value
calculation
(step 1)

P-value
calculation
(step 1)

P-value
threshold-
ing (step 2)

Top feature
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FDR
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Ten Simple Rules for Effective Statistical Practice

1. Statistical methods should enable data to answer
scientific questions.

. Signals always come with noise.
Plan ahead, really ahead.
. Worry about data quality.

o~ WN

. Statistical analysis is more than a set of computations.



Ten Simple Rules for Effective Statistical Practice

6. Keep it simple.

/. Provide assessments of variability.
8. Check your assumptions.

9. When possible, replicate!
10.Make your analysis reproducible.
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About Assignment 1 (Section B)

Record all code and results
Submit in any format (RMD preferred)

Due Feb 19, 2024.
Assignment 1 can be emailed to zang@yvirginia.edu
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