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• False discovery rate (FDR)
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Why statistics is important
• Statistics is the theoretical foundation of machine learning 

and data science
• Statistics is the bridge between experiments and theories
• Statistics is the bridge between observations (data) and 

discoveries (science)



What is a model
• A model describes the relationship between quantities

– Quantitative/mathematical models

• Statistical models
– Relationship between random variables

• “All models are wrong; but some are useful.” (George Box)



Random variables
• Randomness
• All quantities obtained from experimental measurements 

can be considered as random variables
• Discrete vs. continuous random variables

• Probability distribution



Discrete probability distributions
• Bernoulli distribution

• Binomial distribution

• Negative binomial distribution

• Poisson distribution



Continuous probability distributions
• Uniform distribution
• Normal distribution (Gaussian distribution)

• Exponential distribution



Use of probability distributions in computational biology

• Null models for hypothesis testing

• Noise or background models for signal detection and 
differential enrichment analysis

• Error models in regression/machine learning



Central limit theorem 
• Regardless of the population distribution, the sample 

mean will follow a standard normal distribution, if the 
samples are independent and equal size.

• Theoretical foundation of t-test



Hypothesis testing
• General thinking:

– Are they different?
– Is the difference “statistically significant”?

• Statistical thinking:
– Null hypothesis
– Alternative hypothesis



Negative control in experiments

Source: https://www.khanacademy.org/science/biology/intro-to-biology/science-of-biology/a/experiments-and-observations Slide from Jessica Li

https://www.khanacademy.org/science/biology/intro-to-biology/science-of-biology/a/experiments-and-observations


Null hypothesis in statistical hypothesis testing

Source: https://www.awesomefintech.com/term/null_hypothesis/

The null hypothesis does not depend on a test procedure 
Slide from Jessica Li

https://www.awesomefintech.com/term/null_hypothesis/


Null hypothesis in statistical hypothesis testing

Source: https://www.awesomefintech.com/term/null_hypothesis/

Statistics cannot tell us everything b/c data is random
Slide from Jessica Li

https://www.awesomefintech.com/term/null_hypothesis/


Null hypothesis is often misunderstood 

Source: https://www.investopedia.com/terms/n/null_hypothesis.asp Source: https://www.biologyonline.com/dictionary/null-hypothesis

Slide from Jessica Li

https://www.investopedia.com/terms/n/null_hypothesis.asp
https://www.biologyonline.com/dictionary/null-hypothesis


Common hypothesis tests
• Student’s t-test (parametric)

– Null (2-sample): The sample means are equal. 
• Fisher’s exact test

– Null: The two groups are equally likely for an event/feature.
• Wilcoxon (rank-sum) test

– Null: The two samples X and Y, P(X>Y) = P(X<Y) = 0.5
• Kolmogorov-Smirnov test (K-S test)

– Null: The two samples have the same cumulative distribution.

• Hypothesis test statistic, p-value



Which of the following statements about p-values 
is true?

A. P-values measure how big the difference is between the 
datasets compared.

B. P-value is the probability of observing the data by 
random chance.

C. P-value is the least probability of observing the data 
under the assumption that the null hypothesis is true.



ASA statement on statistical significance and p-values

1. P-values can indicate how incompatible the data are with a 
specified statistical model.

2. P-values do not measure the probability that the studied 
hypothesis is true, or the probability that the data were produced 
by random chance alone.

3. Scientific conclusions and business or policy decisions should 
not be based only on whether a p-value passes a specific 
threshold.



ASA statement on statistical significance and p-values

4. Proper inference requires full reporting and transparency.
5. A p-value, or statistical significance, does not measure the size 

of an effect or the importance of a result.
6. By itself, a p-value does not provide a good measure of evidence 

regarding a model or hypothesis.



Multiple testing correction
• High-throughput experiments

– RNA-seq: 500 Differentially Expressed genes from 20K genes
– ChIP-seq: 10,000 TF binding sites from the genome



Bonferroni correction
• Controls family-wise error rate

• N tests

• Adjusted P-value = N * P

• Very strict

Carlo Emilio Bonferroni (1892-1960)



Benjamini-Hochberg (B-H) Correction
• N observations w/ various p-values

• Rank N

• Adjusted P = P * N / R

• Moderate Yoav Benjamini (1949-)

and Yosef Hochberg



Confusion Matrix

(Type I Error)

(Type II Error)

Source: https://towardsdatascience.com/confusion-matrix-for-your-multi-class-machine-learning-model-ff9aa3bf7826

https://towardsdatascience.com/confusion-matrix-for-your-multi-class-machine-learning-model-ff9aa3bf7826


Summary

Source: Wikimedia. Author: Lavender888000



Exaggerated false positives by popular 
di"erential expression methods when analyzing 
human population samples
Yumei Li1†, Xinzhou Ge2†, Fanglue Peng3, Wei Li1* and Jingyi Jessica Li2,4,5,6,7*  

Background
RNA-seq is a transcriptome profiling approach using deep-sequencing technologies [1–
3]. Since RNA-seq was developed over a decade ago, it has become an indispensable tool 
for genome-wide transcriptomic studies. One primary research task in these studies is 
the identification of differentially expressed genes (DEGs) between two conditions (e.g., 
tumor and normal samples) [3]. "is task’s long-standing, core challenge is the small sam-
ple size, typically two or three replicates per condition. Many statistical methods have 
been developed to address this issue by making parametric distributional assumptions on 
RNA-seq data, and the two most popular methods of this type are DESeq2 [4] and edgeR 
[5]. However, as sample sizes have become large in population-level RNA-seq studies, 
where dozens to thousands of samples were collected from individuals [6, 7], a natural 
question to ask is whether DESeq2 and edgeR remain appropriate.

Results and discussion
To evaluate the performance of DESeq2 and edgeR on identifying DEGs between two 
conditions, we applied the two methods to 13 population-level RNA-seq datasets with 
total sample sizes ranging from 100 to 1376 (Additional file 1: Table S1). We found that 

Abstract 
When identifying differentially expressed genes between two conditions using human 
population RNA-seq samples, we found a phenomenon by permutation analysis: two 
popular bioinformatics methods, DESeq2 and edgeR, have unexpectedly high false 
discovery rates. Expanding the analysis to limma-voom, NOISeq, dearseq, and Wilcoxon 
rank-sum test, we found that FDR control is often failed except for the Wilcoxon rank-
sum test. Particularly, the actual FDRs of DESeq2 and edgeR sometimes exceed 20% 
when the target FDR is 5%. Based on these results, for population-level RNA-seq studies 
with large sample sizes, we recommend the Wilcoxon rank-sum test.
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Why there are many DE genes identified from permuted data? 

51 pre-nivolumab 
vs. 
58 on-nivolumab 
anti-PD-1 therapy patients
[Riaz et al., Cell, 2017]

Li et al. Genome Biol 2022



Important assumption in DESeq2 and edgeR

Both DESeq2 and edgeR assume a negative binomial (NB)
distribution per gene and condition
For each gene, 
• Condition 1:  
• Condition 2:

Xi
ind⇠ NB(µ1si,�1), i = 1, . . . , n

Null hypothesis H0 : µ1 = µ2

appropriate only if the NB assumption is reasonable 

Yj
ind⇠ NB(µ2sj ,�2), j = 1, . . . ,m



Gene expression can deviate from NB distribution
 

 

4 
 

Fig. S3 

 
Fig. S3. Quantile-quantile (Q-Q) plots showing the discrepancy between observed read 

counts and the negative binominal theoretical quantiles estimated by edgeR and DESeq2.  

A. The Q-Q plot for CCNL1 with theoretical read counts in two conditions (pre-therapy and on- 

therapy) estimated by edgeR.  

B. The Q-Q plot for EPGN with theoretical read counts in two conditions (pre-therapy and on- 

therapy) estimated by DESeq2.  

  

Li et al. Genome Biol 2022



Why does Wilcoxon test work in this scenario?

For each gene, the normalized counts 

Condition 1:  
Condition 2:

Null hypothesis (approximate, ignoring ties):

H0 : P( eXi > eYj) = 0.5, for all i, j

eXi, i = 1, . . . , n
eYj , j = 1, . . . ,m

which does NOT have the NB assumption 



Wilcoxon test is better when sample size > 8

Page 5 of 13Li et al. Genome Biology           (2022) 23:79  

While the permutation analysis created true negatives (non-DEGs) to allow FDR eval-
uation, it did not allow the evaluation of DEG identification power, which would require 
true positives (DEGs) to be known. Hence, we generated 50 (identically and indepen-
dently distributed) semi-synthetic datasets with known true DEGs and non-DEGs from 
each of the 12 GTEx and TCGA datasets. !en, we used these semi-synthetic datasets 
to evaluate the FDRs and power of the six DEG identification methods (Methods). In 
comparing 386 heart left ventricle samples and 372 atrial appendage samples in a GTEx 
dataset, only the Wilcoxon rank-sum test consistently controlled the FDR under a range 
of thresholds from 0.001 to 5% (Fig. 2A). In contrast, the other five methods, especially 
DESeq2 and edgeR, failed to control the FDR consistently. Moreover, we compared the 
power of the six methods conditional on their actual FDRs (Methods). (Due to the trade-
off between FDR and power, power comparison is only valid when the actual FDRs are 
equal.) As shown in Fig. 2A, the Wilcoxon rank-sum test outperformed the other five 
methods in terms of power.

Finally, to investigate how sample sizes would influence the performance of the six 
methods, we down-sampled each semi-synthetic dataset to obtain per-condition sam-
ple sizes ranging from 2 to 100. Again, only the Wilcoxon rank-sum test consistently 
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Fig. 2 The Wilcoxon rank-sum test has the best FDR control and power on heart left ventricle vs. atrial 
appendage GTEx datasets with semi-synthetic ground truths. A The FDR control (left panel), power (middle 
panel) given the claimed FDRs, and power given the actual FDRs (right panel) under a range of FDR 
thresholds from 0.001 to 5%. B The FDR control (left), power given the claimed FDRs (middle), and power 
given the actual FDRs (right) for a range of per-condition sample sizes from 2 to 100, under FDR thresholds 
10% (top panels) and 1% (bottom panels). The claimed FDRs, actual FDRs, and power were all calculated as 
the averages of 50 randomly down-sampled datasets
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Monty Hall Problem

Source: Wikipedia



Monty Hall Problem

Li Nat Biotech 2023



The order of action matters

Li Nat Biotech 2023



EDITORIAL

Ten Simple Rules for Effective Statistical
Practice
Robert E. Kass1, Brian S. Caffo2, Marie Davidian3, Xiao-Li Meng4, Bin Yu5, Nancy Reid6*

1 Department of Statistics, Machine Learning Department, and Center for the Neural Basis of Cognition,
Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America, 2 Department of
Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United
States of America, 3 Department of Statistics, North Carolina State University, Raleigh, North Carolina,
United States of America, 4 Department of Statistics, Harvard University, Cambridge, Massachusetts, United
States of America, 5 Department of Statistics and Department of Electrical Engineering and Computer
Science, University of California Berkeley, Berkeley, California, United States of America, 6 Department of
Statistical Sciences, University of Toronto, Toronto, Ontario, Canada

* reid@utstat.utoronto.ca

Introduction
Several months ago, Phil Bourne, the initiator and frequent author of the wildly successful and
incredibly useful “Ten Simple Rules” series, suggested that some statisticians put together a
Ten Simple Rules article related to statistics. (One of the rules for writing a PLOS Ten Simple
Rules article is to be Phil Bourne [1]. In lieu of that, we hope effusive praise for Phil will
suffice.)

Implicit in the guidelines for writing Ten Simple Rules [1] is “know your audience.”We
developed our list of rules with researchers in mind: researchers having some knowledge of sta-
tistics, possibly with one or more statisticians available in their building, or possibly with a
healthy do-it-yourself attitude and a handful of statistical packages on their laptops. We drew
on our experience in both collaborative research and teaching, and, it must be said, from our
frustration at being asked, more than once, to “take a quick look at my student’s thesis/my
grant application/my referee’s report: it needs some input on the stats, but it should be pretty
straightforward.”

There are some outstanding resources available that explain many of these concepts clearly
and in much more detail than we have been able to do here: among our favorites are Cox and
Donnelly [2], Leek [3], Peng [4], Kass et al. [5], Tukey [6], and Yu [7].

Every article on statistics requires at least one caveat. Here is ours: we refer in this article to
“science” as a convenient shorthand for investigations using data to study questions of interest.
This includes social science, engineering, digital humanities, finance, and so on. Statisticians
are not shy about reminding administrators that statistical science has an impact on nearly
every part of almost all organizations.

Rule 1: Statistical Methods Should Enable Data to Answer
Scientific Questions
A big difference between inexperienced users of statistics and expert statisticians appears as
soon as they contemplate the uses of some data. While it is obvious that experiments gener-
ate data to answer scientific questions, inexperienced users of statistics tend to take for
granted the link between data and scientific issues and, as a result, may jump directly to a
technique based on data structure rather than scientific goal. For example, if the data were in
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Ten Simple Rules for Effective Statistical Practice

1. Statistical methods should enable data to answer 
scientific questions.

2. Signals always come with noise.
3. Plan ahead, really ahead.
4. Worry about data quality.
5. Statistical analysis is more than a set of computations.



Ten Simple Rules for Effective Statistical Practice

6. Keep it simple.
7. Provide assessments of variability.
8. Check your assumptions.
9. When possible, replicate!
10.Make your analysis reproducible.



Record procedure details!



About Assignment 1 (Section B)
• Record all code and results
• Submit in any format (RMD preferred)

• Due Feb 19, 2024.
• Assignment 1 can be emailed to zang@virginia.edu

mailto:zang@virginia.edu

